Trending

News

  • 0
  • 0

Effect of Rare Earths on Alumina Ceramics

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



From April the French government will reduce fuel taxes slightly to ease the burden on consumers. 

Warned of possible energy shortages in France by the end of the year and called on the French to conserve electricity and gas from now on, saying that if nothing was done, The energy situation will be tough this winter. Some experts say that there are two main reasons for France's energy crisis: first, the conflict between Russia and Ukraine affected the gas market and caused supply tension; The second is a safety review of France's newest nuclear power plant, which may lead to a reduction in output this year. In order to alleviate the energy crisis, the whole French society needs to be mobilized, whether it is the industrial sector, the tertiary sector or every French citizen. Now it is urgent. Rising fuel prices may also have an impact on shipments of the aluminum oxide. 

Aluminum oxide ceramic has the characteristics of high mechanical strength, high hardness, wear and corrosion resistance, high temperature resistance, light weight, and good insulation. Alumina is widely used in textile, coal, petroleum, chemical, electronics, construction and other industries. It is a low-cost and widely used ceramic material.
 
However, the toughness of pure alumina ceramic is poor, and its strength and wear resistance need to be improved, which limits its application field to be further broadened. The synergistic modification of multi-phase has become the research direction to improve the mechanical properties and wear resistance of alumina ceramics.
Rare earth elements have special electronic structure, and the modified alumina has important applications in catalytic materials, ceramic materials and other industries.
The radius of rare earth cations is much larger than that of aluminum ions, and the difference in ion radius makes them difficult to dissolve, so rare earth elements mainly exist on the grain boundary of alumina, and the rare earth oxides with glass network structure are large and difficult to move, which hinders the migration of other ions, reduces the migration rate of grain boundaries, restrains the abnormal growth of grains and makes the structure compact. Rare earth oxides doped with grain boundary glass phase can improve the strength of glass phase and enhance the mechanical properties of ceramics. The more rare earth oxides are added, the more obvious the effect of reducing the sintering temperature is, but the excessive addition will make the mechanical properties of ceramics worse.
 
Effect of rare Earth elements on Microstructure of Alumina Ceramics
After doping nanometer lanthanum oxide, nanometer yttrium oxide and nanometer cerium oxide, the grain size of ceramics will decrease, indicating that rare earth oxides can refine the grains. However, with the increase of rare earth oxide content, the ceramic grain size increases gradually, at the same time, the liquid phase content also increases gradually. This phenomenon may be explained as follows: because the ion radius of rare earth ions is much larger than that of aluminum ions, rare earth ions hardly dissolve in alumina and mainly exist in the glass phase of grain boundary. At the same time, rare earth oxides with glass network structure hinder the migration of ions, inhibit grain growth and refine grains, but excessive addition of rare earth oxides will increase liquid phase volume, reduce liquid phase viscosity, promote ion migration and make grains grow excessively. The grain size becomes larger.
 
Effect of rare Earth elements on hardness of Alumina Ceramics
The hardness of alumina ceramics doped with rare earth oxides such as nanometer lanthanum oxide and nanometer yttrium oxide increases at first and then decreases with the increase of content. The possible reason for this phenomenon is that the addition of appropriate amount of rare earth oxides can refine the grains, increase the amount of liquid phase, fill the grain gaps, increase the density and hardness, but with the excessive addition of rare earth oxides, the negative effects of grain size and interstitial increase on density and hardness can not be offset, showing that the hardness decreases gradually.
 
Effect of rare Earth elements on friction and Wear Properties of Alumina Ceramics
It is found that the worn surface of alumina ceramic goes through four processes: the fracture and pull-out of grains, the formation of friction layer, the increase of friction layer area and crack. The grains shedding off alumina ceramic during wear will remain on the friction interface. A smooth friction layer is formed under the action of surface stress. The friction layer is composed of two kinds of wear debris, which can reduce the wear rate of ceramics. The wear mechanism of alumina ceramics is mainly abrasive wear, and an appropriate amount of rare earth oxide doping can improve the wear resistance of alumina ceramics.
 
Effect on relative density of alumina ceramics
It is found that the relative density of alumina ceramics doped with Y2O3 and CeO2 increases at first and then decreases with the difference of doping amount. At the same time, it is found that the relative density of alumina ceramics with Y2O3 is lower than that of alumina doped with CeO2 and La2O3. It may be because:
The radius of rare earth ions is large, so it is difficult to form solid solution with alumina, which mainly exists in liquid phase, which reduces the viscosity of liquid phase. At the same time, rare earth oxides can promote the chemical reaction of alumina with other additive components and increase the amount of liquid phase. The addition of a small amount of rare earth oxides is beneficial to the formation of liquid phase, accelerate the elimination of pores and improve the density of ceramics.
In addition, the addition of rare earth oxides with high melting point increases the sintering temperature of ceramics, while rare earth ions have a larger ion radius, which hinders the migration of other ions. Excessive addition of rare earth oxides is not conducive to ceramic sintering and reduces the degree of densification.
 
Aluminum oxide Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest al2o3 price, you can send us your inquiry for a quote. (sales3@nanotrun.com
)
 
Aluminum oxide Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted al2o3 manufacturer and al2o3 supplier with over 12-year-experience. We ship our goods all over the world.
 
If you are looking for high-quality al2o3 powder, please feel free to contact us and send an inquiry. (sales3@nanotrun.com
)
 

As the duration of the conflict between Russia and Ukraine grows, its impact on commodities is widening amid the tug-of-war. Recently, European and American sanctions against Russia have been issued one after another. In response, Russia has taken advantage of its role as an important supplier of many energy and commodities, requiring exports of commodities, including energy, grain, metal, and wood, to "unfriendly" countries to be settled in robles. Therefore, it is expected that the price of the aluminum oxide will continue to increase.  


Inquiry us

High Purity 3D Printing Nickel Alloy IN718 Powder

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

High Purity Antimony Sulfide Sb2S3 Powder CAS 1314-87-0, 99.99%

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Vanadium Boride VB2 Powder CAS 12007-37-3, 99%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity 3D Printing Nickel-based Alloy IN738 Powder

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Titanium Nitride TiN Powder CAS 25583-20-4, 99.5%

Supply Magnesium Granules Mg Granules 99.95%

Our Latest Products

High Purity 3D Printing Nickel Alloy IN718 Powder

In718 Powder is widely used for industrial and aviation turbo-propellers, petrochemical, nuclear reactors, and other fields.Particle Size: 15-45mm; 15-53mm; 53-120mm and 53-150mm 3D Printing Nickel Alloy Inconel 718 Properties: Nickel Alloy IN71…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal Al…

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It has a high solubility level in water. It's also easily soluble when heated alkali is used.Particle size : 100mesh Purity: 99.99% About Germanium Sulfide (GeS2)…