Newly 3000°C Ablative Ceramic Coating Successfully Developed - Multi-boron-containing Single-phase Carbide
If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net
Boron carbide is also known as black Diamond. It has the molecular form B4C. The powder is typically grayish. It is one the hardest materials known (the other two being diamond and cubic boronnitride), which can be found in many industrial applications, including tank armor. It has a Mohs toughness of 9.3. A large number of tests were conducted by the team of Academician Huang Boyun of Central South University’s National Laboratory of Powder Metallurgy to develop a new ceramic coating and composite materials that are resistant to ablation of 3000 degC. This discovery could pave a way for the creation of hypersonic cars.
According to Professor Xiong Xiang of the Institute of Powder Metallurgy of Central South University's Institute of Powder Metallurgy (IPM), hypersonic flight is defined as a flight speed that is at least 6120 km/h, or 5 times faster than the speed of the sound. With such high speeds, the flight between Beijing and New York could be completed in just 2 hours if the aircraft's key structural components can handle severe air friction as well as hot air impacts of 2000-3000 degrees Celsius. . Central South University has developed ceramic composites and coatings for ultra-high temperatures that provide better protection of the above components. The world's very first synthesis of a single-phase quaternary boron carbide ultra-high-temperature ceramic material has been reported. This coating is a perfect "fusion" between carbon-carbon. The current focus of research in the area of new materials is on the mixed materials of binary compound system. The successful application of materials quaternary to hypersonic will be greatly facilitated by its development.
The novel ceramic coated modified carbon/carbon material is composed by a single-phase carbide of zirconium (quarterary), titanium, carbon, and boron. It has a stable carbide-crystal structure. Infiltration of a multiceramic phase is the main method for obtaining it. The ultra high temperature ceramic combines the high-temperature adaptability of carbides and the anti-oxidation property of borides. This makes the coatings, composites and materials exhibit superior ablation and thermal shock resistance. The ceramic oxide can withstand an ultra-high temperature of 3000 degC and has low oxygen diffusion rates, self-healing properties at high temperatures, dense ceramic coatings, and gradient structures. It also exhibits a lower material content than other ceramic systems. Ablation loss rate.
"Because the ultra-high-temperature ceramic combines carbide's high temperature adaptability with boride's anti-oxidation property, the coatings and materials above have superior ablation and thermal shock resistance. This is essential for hypersonic cars. Xiong Xiang said that the promising candidates were for the parts.
Nature Communications published on 15 June the results of research conducted by the team. The State Key Laboratory of Powder Metallurgy of Central South University was the first unit to complete the thesis. Zeng Yi and Professor Xiong Xiang are the first correspondents. First author is the doctor. The University of Manchester (UK), a partner unit of the University of Manchester, UK characterized the material and performed an analysis.
After publication, the article attracted a great deal of interest from the foreign media and academic circles. In the three days immediately following publication, this article was downloaded over 5,000-times, while other articles were only downloaded 300 to 900-times. The Daily Mail in Britain, The Economist in the United States and Public Machinery (Russia) have all covered the research. . According to the reviewer in Nature Newsletter, the above research results "will ignite the academic excitement and interest in applying quaternary materials in hypersonic fields, because this material system represents a promising one."
The team has been working on anti-oxidation coatings for carbon/carbon composites since 2002. This was done with the help of the National 863 and 973, as well as the National Natural Science Foundation. Professor Chang Xiang is the leader of this project. Find a new ultra high temperature ceramic coating that has excellent oxidation resistance, and resistance to ablation. During the research, the material systems screened, from the initial silica carbide to strontium carbide (and then titanium carbide), zirconium carbonate, zirconium boreide, tantalum carbide and other hundreds of high temperature materials, involved almost all existing ultra-high-temperature ceramics and composites. It has taken 15 years to achieve the breakthrough of developing new ablation-resistant coatings in 3000 degC ultra high temperature environment.
Tech Co., Ltd., a professional Boride powder manufacturer, has over 12 years of experience in chemical product development and research. You can contact us by sending an inquiry if you are interested in high quality Boride powder.
Inquiry us